Сульфат железа 3 химические свойства. Соединения железа (III)

Реферат на тему:

Сульфат железа(III)



План:

    Введение
  • 1 Физические свойства
  • 2 Нахождение в природе
    • 2.1 Марс
  • 3 Получение
  • 4 Химические свойства
  • 5 Использование
  • Примечания

Введение

Сульфат железа(III) (лат. Ferrum sulfuricum oxydatum , нем. Eisensulfat (oxyd) Ferrisulfat ) - неорганическое химическое соединение, соль, химическая формула - .


1. Физические свойства

Безводный сульфат железа(III) - светло-желтые, парамагнитные, очень гигроскопичные кристаллы моноклинной сингонии, пространственная группа P2 1 /m, параметры элементарной ячейки a = 0,8296 нм, b = 0,8515 нм,c = 1,160 нм, β = 90,5°, Z = 4. Есть данные, что безводный сульфат железа образовывает орторомбическую и гексагональную модификации. Растворим в воде и ацетоне, не растворяется в этаноле.

Из воды кристаллизуется в виде кристаллогидратов Fe 2 (SO 4) 3 ·n H 2 O, где n = 12, 10, 9, 7, 6, 3. Наиболее изученный кристаллогидрат - нонагидрат сульфата железа(III) Fe 2 (SO 4) 3 ·9H 2 O - жёлтые гексагональные кристаллы, параметры элементарной ячейки a = 1,085 нм, c = 1,703 нм, Z = 4. Хорошо растворяется в воде (440 г на 100 г воды) и этаноле, не растворяется в ацетоне. В водных растворах сульфат железа(III) из-за гидролиза приобретает красно-коричневый цвет.

При нагревании нонагидрат превращается при 98 °C в тетрагидрат, при 125 °C - в моногидрат и при 175 °C - в безводный Fe 2 (SO 4) 3 , который выше 600 °C разлагается на Fe 2 O 3 и SO 3 .


2. Нахождение в природе

Минерал, содержащий в себе смешанный сульфат железа-алюминия называется микасаит (англ. mikasaite ), с химической формулой (Fe 3+ , Al 3+) 2 (SO 4) 3 является минералогической формой сульфата железа(III). Этот минерал несет в себе безводную форму сульфата железа, поэтому встречается в природе очень редко. Гидратированные формы встречаются чаще всего, например:

  • Кокимбит (англ. coquimbite ) - Fe 2 (SO 4) 3 ·9H 2 O - нонагидрат - наиболее чаще встречающийся среди таковых.
  • Паракокимбит (англ. paracoquimbite ) - нонагидрат - наоборот - наиболее редко встречающийся минерал в природе.
  • Корнелит (англ. kornelite ) - гептагидрат - и куэнстедтит (англ. quenstedtite ) - декагидрат - так же встречаются редко.
  • Лаусенит (англ. lausenite ) - гекса- или пентагидрат, малоизученный минерал.

Все перечисленные выше природные гидраты железа являются непрочными соединениями и в открытом состоянии быстро выветриваются.


2.1. Марс

Сульфат железа и ярозит были обнаружены двумя марсоходами: Спирит и Оппортьюнити. Эти вещества являются признаком сильных окислительных условий на поверхности Марса. В мае 2009 года марсоход Спирит застрял, когда он ехал по мягкому грунту планеты и наехал на залежи сульфата железа, скрытые под слоем обычного грунта . Вследствие того, что сульфат железа имеет очень низкую плотность, то марсоход застрял настолько глубоко, что часть его корпуса коснулась поверхности планеты.


3. Получение

В промышленности сульфат железа(III) получают прокаливанием пирита или марказита с NaCl на воздухе:

или растворяют оксид железа(III) в серной кислоте:

В лабораторной практике сульфат железа(III) можно получить из гидроокиси железа(III):

Препарат той же чистоты можно получить окислением сульфата железа(II) азотной кислотой:

также окисление можно провести кислородом или оксидом серы:

Концентрированные серная и азотная кислоты окисляют сульфид железа до сульфата железа(III):

Дисульфид железа можно окислить концентрированной серной кислотой:

Сульфат-аммоний железа(II) (соль Мора) также можно окислить дихроматом калия. Вследствие данной реакции выделятся сразу четыре сульфата - железа(III), хрома(III), аммиака и калия, и вода:

Сульфат железа(III) можно получить как один из продуктов термического разложения сульфата железа(II):

Ферраты с разбавленной серной кислотой восстанавливаются до сульфата железа(III):

Нагрев пентагидрат до температуры 70-175 °C получим безводный сульфат железа(III):

Сульфат железа(II) можно окислить таким экзотическим окислителем, как оксид ксенона(III):


4. Химические свойства

Сульфат железа(III) в водных растворах подвергается сильному гидролизу по катиону, при этом раствор окрашивается в красновато-коричневый цвет:

Горячая вода или пар разлагают сульфат железа(III):

Безводный сульфат железа(III) при нагревании разлагается:

Растворы щелочей разлагают сульфат железа(III), продукты реакции зависят от концентрации щёлочи:

Если с щёлочью взаимодействует эквимолярный раствор сульфатов железа(III) и железа(II), то в результате получится сложный оксид железа:

Активные металлы (такие как магний, цинк, кадмий, железо) восстанавливают сульфат железа(III):

Некоторые сульфиды металлов (например, меди, кальция, олова, свинца, ртути) в водном растворе восстанавливают сульфат железа(III):

С растворимыми солями ортофосфорной кислоты образует нерастворимый фосфат железа(III) (гетерозит):


5. Использование

  • Как реактив при гидрометаллургической переработке медных руд.
  • Как коагулянт при очистке сточных вод, коммунальных и промышленных стоков.
  • Как протрава при в окраске тканей.
  • При дублении кожи.
  • Для декапирования нержавеющих аустенитных сталей, сплавов золота с алюминием.
  • Как флотационый регулятор для уменьшения плавучести руд.
  • В медицине используется в качестве вяжущего и кровоостанавливающего средства.
  • В химическое промышленности как окислитель и катализатор.


Fe 2 (SO 4) 3 Мол. в. 399,88

Fe 2 (SO 4) 3 ·9H 2 O Мол. в. 562,02

Свойства

Безводный реактив - белый или желтоватый порошок, расплывающийся на воздухе в коричневую жидкость. Пл. 3,097 г/см 3 .

Кристаллогидрат Fe 2 (SO 4) 3 ·9H 2 O - кристаллическое вещество, пл. 2,1 г/см 3 . Соль способна образовывать очень концентрированные водные растворы (при 20 °С в 100 г воды растворяется 440 г Fe 2 (SO 4) 3 ·9H 2 O), но растворение идет медленно; растворима в этиловом спирте, нерастворима в концентрированной H 2 SO 4 . Водный раствор вследствие гидролиза (образование золя Fe(OH) 3) окрашен в красно-бурый цвет, добавление H 2 SO 4 подавляет гидролиз и раствор становится почти бесцветным. При кипячении разбавленного раствора осаждается основная соль.


Приготовление

1. Сернокислое железо (III) можно получить, растворяя гидроокись железа (III) в серной кислоте:

Fe(NO 3) 3 + 3NH 4 OH = 3NH 4 NO 3 + Fe(OH) 3 в

2Fe(OH) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

В раствор 50 г Fe(NO) 3 ·9H 2 O (ч.) в 50 мл горячей воды приливают 65-70 мл NH 4 OH (ч. д. а. или ч., пл. 0,91). Осадок Fe(OH) 3 быстро промывают декантацией горячей водой до полного отсутствия NO 3 - в промывных водах (проба с дифениламином).

Влажный осадок Fe(OH) 3 переносят в фарфоровую чашку, добавляют 9 мл H 2 SO 4 (х.ч., пл. 1,84) и нагревают 1-2 ч, часто перемешивая, до почти полного растворения осадка. Раствор фильтруют, добавляют к фильтрату 1 каплю H 2 SO 4 и упаривают до консистенции густого сиропа (объем оставшейся жидкости должен быть около 50 мл). В раствор вносят затравку (кристаллик Fe 2 (SO 4) 3 ·9H 2 O) и оставляют на сутки для кристаллизации. Кристаллы отсасывают на воронке Бюхнера и сушат на стеклянной пластинке при 50-60 °С.

Выход 40 г (80%). Полученный препарат обычно соответствует реактиву квалификации ч.д.а.

2. Препарат той же чистоты можно получить окислением сернокислого железа (II) азотной кислотой:

2FeSO 4 + H 2 SO 4 + 2HNO 3 = Fe 2 (SO 4) 3 + 2NO 2 б + 2H 2 O

Работу следует проводить под тягой.

В нагретый до 70 °С раствор 85 г FeSO 4 ·7H 2 O (ч. д. а.) в 110 мл воды небольшими порциями приливают 8 мл H2SO4 (ч. д. а., пл. 1,84) (остерегаться брызг !) и затем 100 мл HNO 3 (ч. д. а., пл. 1,35), поддерживая температуру раствора 95-100 °С. Степень окисления Fe 2+ в Fe 3+ проверяют пробой с K 3 (Fe(CN) 6) (при полном окислении не должно быть синего окрашивания).

Раствор фильтруют, к фильтрату добавляют 4 мл H 2 SO 4 и упаривают до образования тягучей тестообразно массы, при этом температура ее достигает 120 °С. Массу охлаждают до 45-50 °С, выпавшие кристаллы отсасывают на воронке Бюхнера и сушат их при температуре не выше 65 °С.

Формула:

Сульфат железа(II), железный купорос, FeSO 4 - соль серной кислоты и 2-х валентного железа. Твёрдость - 2.

В химии железным купоросом называют кристаллогидрат сульфата железа(II) . Кристаллы светло-зелёного цвета. Применяется втекстильной промышленности, в сельском хозяйстве как инсектицид, для приготовления минеральных красок.

Природный аналог - минерал мелантерит ; в природе встречается в кристаллах моноклиноэдрической системы, зелёно-жёлтого цвета, в виде примазок или натёков.

Молярная масса : 151,91 г/моль

Плотность: 1,8-1,9 г/см³

Температура плавления : 400 °C

Растворимость в воде : 25.6 г/100 мл

Сульфат 2-валентного железа выделяется при температурах от 1,82 °C до 56,8 °C из водных растворов в виде светло-зелёных кристаллов FeSO 4 · 7H 2 О, называется в технике железным купоросом (кристаллогидрат). В 100 г воды растворяется: 26,6 г безводного FeSO 4 при 20 °C и 54,4 г при 56 °C.

Растворы сульфата 2-валентного железа под действием кислорода воздуха со временем окисляются, переходя в сульфат железа (III):

12FeSO 4 + O 2 + 6H 2 O = 4Fe 2 (SO 4) 3 + 4Fe(OH) 3 ↓

При нагревании свыше 480 °C разлагается:

2FeSO 4 → Fe 2 O 3 + SO 2 + SO 3

    Получение.

    Железный купорос можно приготовить действием разбавленной серной кислоты на железный лом, обрезки кровельного железа и т. д. В промышленности его получают как побочный продукт при травлении разбавленной H 2 SO 4 железных листов, проволоки и др., для удаленияокалины.

Fe + H 2 SO 4 = FeSO 4 + H 2

    Другой способ - окислительный обжиг пирита:

2FeS 2 + 7O 2 + 2H 2 O = 2FeSO 4 + 2H 2 SO 4

    Качественный анализ.

      Аналитические реакции на катион железа (II ).

1. С гексацианоферратом(III) калия K 3 с образованием тёмно-синего осадка гексацианоферрата(III) железа(II) калия (“турнбулевой сини”), нерастворимого в кислотах, разлагающегося щелочами с образованием Fe(OH) 3 (ГФ).

FeSO 4 + K 3 KFe + K 2 SO 4

Оптимальная величина рН проведения реакции составляет 2-3. Реакция дробная, высокочувствительная. Мешают высокие концентрации Fe 3+ .

2. С сульфидом аммония (NH 4 ) 2 S с образованием чёрного осадка, растворимого в сильных кислотах (ГФ).

FeSO 4 + (NH 4) 2 S
FeS + (NH 4) 2 SO 4

3.2. Аналитические реакции на сульфат-ион.

1. С групповым реактивом BaCl 2 + CaCl 2 или BaCl 2 (ГФ).

Дробное открытие сульфат-иона проводят в кислой среде, что позволяет устранить мешающее влияние CO 3 2- , PO 4 3- , и др., и при кипячении исследуемого раствора с 6 моль/дм 3 HCl для удаления S 2- , SO 3 2- , S 2 O 3 2- -ионов, которые могут образовать элементную серу, осадок которой можно принять за осадок BaSO 4 . Осадок BaSO 4 способен образовывать изоморфные кристаллы с KMnO 4 и окрашиваться в розовый цвет (повышается специфичность реакции).

Методика выполнения реакции в присутствии 0,002 моль/дм 3 KMnO 4 .

К 3-5 каплям испытуемого раствора добавляют равные объёмы растворов перманганата калия, хлорида бария и хлороводородной кислоты и энергично перемешивают 2-3 мин. Дают отстояться и, не отделяя осадка от раствора, добавляют 1-2 капли 3% раствора Н 2 О 2 , перемешивают и центрифугируют. Осадок должен остаться окрашенным в розовый цвет, а раствор над осадком обесцветиться.

2. С ацетатом свинца.

SO 4 2- + Pb 2+
PbSO 4 

Методика : к 2 см 3 раствора сульфата добавляют 0,5 см 3 разбавленной хлороводородной кислоты и 0,5 см 3 раствора ацетата свинца; образуется белый осадок, растворимый в насыщенном растворе ацетата аммония или гидроксида натрия.

PbSO 4  + 4 NaOH
Na 2 + Na 2 SO 4

    С cолями стронция – образование белого осадка, нерастворимого в кислотах (отличие от сульфитов).

SO 4 2 - + Sr 2+
SrSO 4 

Методика : К 4-5 каплям анализируемого раствора добавляют 4-5 капель концентрированного раствора хлорида стронция, выпадает белый осадок.

    С солями кальция – образование игольчатых кристаллов гипса CaSO 4  2H 2 O.

SO 4 2- + Са 2+ + 2Н 2 О
СаSO 4  2Н 2 О

Методика: на предметное стекло наносят по капле анализируемого раствора и соли кальция, слегка подсушивают. Образовавшиеся кристаллы рассматривают под микроскопом.

    Количественный анализ.

      Перманганатометрия.

Определение массовой доли железа в образце соли Мора (NH 4) 2 Fe(SO 4) 2 6H 2 O перманганатометрическим методом

(вариант прямого титрования)

Определение основано на окислении железа(II) перманганатом калия до железа(III).

10 FeSO 4 + 2 KMnO 4 + 8 H 2 SO 4 = 5 Fe 2 (SO 4 ) 3 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O

М (Fe) = 55,85 г/моль

Методика: Точную навеску соли Мора, необходимую для приготовления 100 см 3 0,1 М раствора соли Мора, количественно переносят в мерную колбу вместимостью 100 см 3 , растворяют в небольшом количестве дистиллированной воды, после полного растворения доводят водой до метки, перемешивают. Аликвотную часть полученного раствора (индивидуальное задание) помещают в колбу для титрования, прибавляют равный объём разведённой серной кислоты (1:5) и медленно титруют раствором перманганата калия до слаборозового окрашивания раствора, устойчивого в течение 30 секунд.

    Применение.

Применяют в производстве чернил ;

В красильном деле (для окраски шерсти в чёрный цвет);

Для консервирования дерева.

    Список литературы.

    Лурье Ю.Ю. Справочник по аналитической химии. Москва, 1972;

    Методическое указание «Инструментальные методы анализа», Пермь, 2004;

    Методическое указание «Качественный химический анализ», Пермь, 2003;

    Методическое указание «Количественный химический анализ», Пермь, 2004;

    Рабинович В.А., Хавин З.Я. Краткий химический справочник, Ленинград, 1991;

    «Большая советская энциклопедия»;

    Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

    Химическая формула

    Молярная масса Fe 2 (SO 4) 3 , сульфат железа (III) 399.8778 г/моль

    55,845·2+(32,065+15,9994·4)·3

    Массовые доли элементов в соединении

    Использование калькулятора молярной массы

    • Химические формулы нужно вводить с учетом регистра
    • Индексы вводятся как обычные числа
    • Точка на средней линии (знак умножения), применяемая, например, в формулах кристаллогидратов, заменяется обычной точкой.
    • Пример: вместо CuSO₄·5H₂O в конвертере для удобства ввода используется написание CuSO4.5H2O .

    Калькулятор молярной массы

    Моль

    Все вещества состоят из атомов и молекул. В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ. Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро N A , если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n ) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.

    Постоянная Авогадро N A = 6.02214076×10²³ моль⁻¹. Число Авогадро - 6.02214076×10²³.

    Другими словами моль - это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.

    Молярная масса

    Молярная масса - физическое свойство вещества, определяемое как отношение массы этого вещества к количеству вещества в молях. Говоря иначе, это масса одного моля вещества. В системе СИ единицей молярной массы является килограмм/моль (кг/моль). Однако химики привыкли пользоваться более удобной единицей г/моль.

    молярная масса = г/моль

    Молярная масса элементов и соединений

    Соединения - вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

    • соль (хлорид натрия) NaCl
    • сахар (сахароза) C₁₂H₂₂O₁₁
    • уксус (раствор уксусной кислоты) CH₃COOH

    Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

    Молекулярная масса

    Молекулярная масса (старое название - молекулярный вес) - это масса молекулы, рассчитанная как сумма масс каждого атома, входящего в состав молекулы, умноженных на количество атомов в этой молекуле. Молекулярная масса представляет собой безразмерную физическую величину, численно равную молярной массе. То есть, молекулярная масса отличается от молярной массы размерностью. Несмотря на то, что молекулярная масса является безразмерной величиной, она все же имеет величину, называемую атомной единицей массы (а.е.м.) или дальтоном (Да), и приблизительно равную массе одного протона или нейтрона. Атомная единица массы также численно равна 1 г/моль.

    Расчет молярной массы

    Молярную массу рассчитывают так:

    • определяют атомные массы элементов по таблице Менделеева;
    • определяют количество атомов каждого элемента в формуле соединения;
    • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

    Например, рассчитаем молярную массу уксусной кислоты

    Она состоит из:

    • двух атомов углерода
    • четырех атомов водорода
    • двух атомов кислорода
    • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
    • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
    • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
    • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

    Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Соединения железа (II)

    Соединения железа со степень окисления железа +2 малоустойчивы и легко окисляются до производных железа (III).

    Fe 2 O 3 + CO = 2FeO + CO 2 .

    Гидроксид железа (II) Fe(OH) 2 в свежеосажденном виде имеет серовато-зеленую окраску, в воде не растворяется, при температуре выше 150 °С разлагается, быстро темнеет вследствие окисления:

    4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3 .

    Проявляет слабовыраженные амфотерные свойства с преобладанием основных, легко реагирует с неокисляющими кислотами:

    Fe(OH) 2 + 2HCl = FeCl 2 + 2H 2 O.

    Взаимодействует с концентрированными растворами щелочей при нагревании с образованием тетрагидроксоферрата (II):

    Fe(OH) 2 + 2NaOH = Na 2 .

    Проявляет восстановительные свойства, при взаимодействии с азотной или концентрированной серной кислотой образуются соли железа (III):

    2Fe(OH) 2 + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 6H 2 O.

    Получается при взаимодействии солей железа (II) с раствором щелочи в отсутствии кислорода воздуха:

    FeSO 4 + 2NaOH = Fe(OH) 2 + Na 2 SO 4 .

    Соли железа (II). Железо (II) образует соли практически со всеми анионами. Обычно соли кристаллизуются в виде зеленых кристаллогидратов: Fe(NO 3) 2 · 6H 2 O, FeSO 4 · 7H 2 O, FeBr 2 · 6H 2 O, (NH 4) 2 Fe(SO 4) 2 · 6H 2 O (соль Мора) и др. Растворы солей имеют бледно-зеленую окраску и, вследствие гидролиза , кислую среду:

    Fe 2+ + H 2 O = FeOH + + H + .

    Проявляют все свойства солей.

    При стоянии на воздухе медленно окисляются растворенным кислородом до солей железа (III):

    4FeCl 2 + O 2 + 2H 2 O = 4FeOHCl 2 .

    Качественная реакция на катион Fe 2+ - взаимодействие с гексацианоферратом (III) калия (красной кровяной солью) :

    FeSO 4 + K 3 = KFe↓ + K 2 SO 4

    Fe 2+ + K + + 3- = KFe↓

    в результате реакции образуется осадок синего цвета - гексацианоферрат (II) железа (III) - калия.

    Степень окисления +3 характерна для железа.

    Оксид железа (III) Fe 2 O 3 - вещество бурого цвета, существует в трех полиморфных модификациях.


    Проявляет слабовыраженные амфотерные свойства с преобладанием основных. Легко реагирует с кислотами:

    Fe 2 O 3 + 6HCl = 2FeCl 3 + 3H 2 O.

    С растворами щелочей не реагирует, но при сплавлении образует ферриты :

    Fe 2 O 3 + 2NaOH = 2NaFeO 2 + H 2 O.

    Проявляет окислительные и восстановительные свойства. При нагревании восстанавливается водородом или оксидом углерода (II), проявляя окислительные свойства:

    Fe 2 O 3 + H 2 = 2FeO + H 2 O,

    Fe 2 O 3 + CO = 2FeO + CO 2 .

    В присутствии сильных окислителей в щелочной среде проявляет восстановительные свойства и окисляется до производных железа (VI):

    Fe 2 O 3 + 3KNO 3 + 4KOH = 2K 2 FeO 4 + 3KNO 2 + 2H 2 O.

    При температуре выше 1400°С разлагается:

    6Fe 2 O 3 = 4Fe 3 O 4 + O 2 .

    Получается при термическом разложении гидроксида железа (III):

    2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

    или окислением пирита:

    4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

    FeCl 3 + 3KCNS = Fe(CNS) 3 + 3KCl,