Разрешающая способность и предел разрешения микроскопа. Разрешающая способность и увеличение микроскопа Разрешающая способность микроскопа зависит от

Качество изображения определяется разрешающей способностью микроскопа , т.е. минимальным расстоянием, на котором оптика микроскопа может различить раздельно две близко расположенные точки. разрешающая способность зависит от числовой апертуры объектива, конденсора и длины волны света, которым освещается препарат. Числовая апертура (раскрытие) зависит от угловой апертуры и показателя преломления среды, находящейся между фронтальной линзой объектива и конденсора и препаратом.

Угловая апертура объектива - это максимальный угол (AOB), под которым могут попадать в объектив лучи, прошедшие через препарат. Числовая апертура объектива равна произведению синуса половины угловой апертуры на показатель преломления среды, находящейся между предметным стеклом и фронтальной линзой объектива. N.A. = n sinα где, N.A. - числовая апертура; n - показатель преломления среды между препаратом и объективом; sinα - синус угла α равного половине угла АОВ на схеме.

Таким образом, апертура сухих систем (между фронтальной линзой объектива и препаратом-воздух) не может быть более 1 (обычно не более 0,95). Среда, помещаемая между препаратом и объективом, называется иммерсионной жидкостью или иммерсией, а объектив, рассчитанный для работы с иммерсионной жидкостью, называют иммерсионным. Благодаря иммерсии с более высоким показателем преломления чем у воздуха, можно повысить числовую апертуру объектива и, следовательно, разрешающую способность.

Числовая апертура объективов всегда гравируется на их оправах.
Разрешающая способность микроскопа зависит также от апертуры конденсора. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет вид R=λ/2NA, где R - предел разрешения; λ - длина волны; N.A - числовая апертура. Из этой формулы видно, что при наблюдении в видимом свете (зеленый участок спектра - λ=550нм), разрешающая способность (предел разрешения) не может быть > 0,2мкм

Влияние числовой апертуры объектива микроскопа на качество изображения

Пути повышения оптической разрешающей способности

Выбор большого угла светового конуса, как со стороны объектива, так и со стороны источника освещения. Благодаря этому, возможно, собрать в объективе более преломленные лучи света от очень тонких структур. Таким образом, первый путь повышения разрешения - это использование конденсора, числовая апертура которого соответствует числовой апертуре объектива.

Второй способ - использование иммерсионной жидкости между фронтальной линзой объектива и покровным стеклом. Так мы воздействуем на показатель преломления среды n, описанный в первой формуле. Его оптимальное значение, рекомендуемое для иммерсионных жидкостей, составляет 1.51.

Иммерсионные жидкости

Иммерсионные жидкости необходимы для увеличения числовой апертуры и соответственно повышения разрешающей способности иммерсионных объективов, специально рассчитанных для работы с этими жидкостями и, соответствующим образом, маркированными. Иммерсионные жидкости, помещенные между объективом и препаратом, имеют более высокий показатель преломления, чем воздух. Поэтому, отклоненные мельчайшими деталями объекта лучи света, не рассеиваются, выходя из препарата, и попадают в объектив, что приводит к повышению разрешающей способности.

Существуют объективы водной иммерсии (маркированные белым кольцом), масляной иммерсии (черное кольцо), глицериновой иммерсии (желтое кольцо), монобромнафталиновой иммерсии (красное кольцо). В световой микроскопии биологических препаратов применяются объективы водной и масляной иммерсии. Специальные кварцевые объективы глицериновой иммерсии пропускают коротковолновое ультрафиолетовое излучение и предназначены для ультрафиолетовой (не путать с люминесцентной) микроскопии (то есть для изучения биологических объектов, избирательнопоглощающих ультрафиолетовые лучи). Объективы монобромнафталиновой иммерсии в микроскопии биологических объектов не используются.

В качестве иммерсионной жидкости для объектива водной иммерсии используется дистиллированная вода, масляной иммерсии - природное (кедровое) или синтетическое масло с определенным показателем преломления.

В отличие от других иммерсионных жидкостей масляная иммерсия является гомогенной, так как имеет показатель преломления равный или очень близкий показателю преломления стекла. Обычно этот показатель преломления (n) рассчитан для определенной спектральной линии и определенной температуры и указывается на флаконе с маслом. Так, например, показатель преломления иммерсионного масла для работы с покровным стеклом для спектральной линии D в спектре натрия при температуре =20°С равен 1,515 (nD 20 = 1,515), для работы без покровного стекла (nD 20 = 1,520).

Для работы с объективами-апохроматами нормируется также дисперсия, то есть разность показателей преломления для различных линий спектра.

Использование синтетического иммерсионного масла предпочтительнее, поскольку его параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на поверхности фронтальной линзы объектива.

Учитывая вышесказанное, ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом. При некоторых способах микроскопии для увеличения апертуры конденсора, иммерсионная жидкость (чаще дистиллированная вода) помещается между конденсором и препаратом.

Предел разрешения – это такое наименьшее расстояние между двумя точками предмета, при котором эти точки различимы, т.е. воспринимаются в микроскопе как две точки.

Разрешающая способность определяется как способность микроскопа давать раздельные изображение мелких деталей рассматриваемого предмета. Она задается формулой:

где А – числовая апертура, l – длина волны света; , где n – показатель преломления среды, в которой находится рассматриваемый объект, U – апертурный угол.

Для изучения структуры мельчайших живых существ необходимы микроскопы с большим увеличением и хорошей разрешающей способностью. Оптический микроскоп ограничен увеличением в 2000 раз и имеет разрешающую способность не лучше 250 нм. Эти значения не годятся для исследования мелких деталей клеток.

118. Ультрафиолетовый микроскоп. Один из способов уменьшения

предела разрешения микроскопа - использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Так как глаз непосредственно не воспринимает этого излучения, то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи. Другим способом уменьшения предела разрешения микроскопа является увеличение показателя преломления среды, в которой находится микроскоп. Для этого его помещают в иммерсионную жидкость , например, кедровое масло.

119. Люминесцентная (флюоресцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом.

Цвет люминесценции смещен в более длинноволновую часть спектра по сравнению с возбуждающим ее светом (правило Стокса). При возбуждении люминесценции синим светом цвет ее может быть от зеленого до красного, если люминесценция возбуждается ультрафиолетовым излучением, то свечение может быть в любой части видимого спектра. Эта особенность люминесценции позволяет, используя специальные светофильтры, поглощающие возбуждающий свет, наблюдать сравнительно слабое люминесцентное свечение.

Поскольку большинство микроорганизмов не обладают собственной люминесценцией, то прибегают к их окрашиванию растворами флюоресцирующих красителей. Этот метод используется для бактериоскопического исследования возбудителей некоторых инфекций: туберкулеза (ауромин), включений в клетках, образуемых некоторыми вирусами и др. Этот же способ может применяться для цитохимического изучения живых и фиксированных микроорганизмов. В реакции иммуннофлюоресценции с помощью антител, меченных флюорохромами, выявляются антигены микроорганизмов или антитела в сыворотке больных

120. Фазово-контрастная микроскопия. При микроскопии неокрашенных микроорганизмов, отличающихся от окружающей среды только по показателю преломления, изменения интенсивности света (амплитуды) не происходит, а изменяется только фаза прошедших световых волн. Поэтому глаз этих изменений заметить не может и наблюдаемые объекты выглядят малоконтрастными, прозрачными. Для наблюдения таких объектов используют фазово-контрастную микроскопию, основанную на превращении невидимых фазовых изменений, вносимых объектом, в амплитудные, различимые глазом.

Благодаря применению этого способа микроскопии контраст живых неокрашенных микроорганизмов резко увеличивается и они выглядят темными на светлом фоне или светлыми на темном фоне.

Фазово-контрастная микроскопия применяется также для изучения клеток культуры ткани, наблюдения действия различных вирусов на клетки и т. п.

121. Темнопольная микроскопия. Темнопольная микроскопия основана на способности микроорганизмов сильно рассеивать свет. Для темнопольной микроскопии пользуются обычными объективами и специальными темнопольными конденсорами.

Основная особенность темнопольных конденсоров заключается в том, что центральная часть у них затемнена и прямые лучи от осветителя в объектив микроскопа не попадают. Объект освещается косыми боковыми лучами и в объектив микроскопа попадают только лучи, рассеянные частицами, находящимися в препарате. Темнопольная микроскопия основана на эффекте Тиндаля, известным примером которого служит обнаружение пылинок в воздухе при освещении их узким лучом солнечного света.

При темнопольной микроскопии микроорганизмы выглядят ярко светящимися на черном фоне. При этом способе микроскопии могут быть обнаружены мельчайшие микроорганизмы, размеры которых лежат за пределами разрешающей способности микроскопа. Однако темнопольная микроскопия позволяет увидеть только контуры объекта, но не дает возможности изучить внутреннюю структуру.

122. Тепловое излучение является самым распространенным в природе видом электромагнитного излучения. Оно совершается за счет энергии теплового движения атомов и молекул вещества. Тепловое излучение присуще всем телам при любой температуре, отличной от абсолютного нуля.

Полная лучеиспускательная способность тела Е(её еще называют энергетической светимостью) - это величина энергии, испускаемой с единицы площади поверхности тела за 1с. Измеряется в Дж/м 2 с.

Полная лучепоглощательная способность тела А(коэффициент поглощения) – это отношение лучистой энергии, поглощенной телом, ко всей падающей на него лучистой энергии; А – безразмерная величина.

123. Абсолютно черное тело. Воображаемое тело, поглощающее при любой температуре всю падающую на него лучистую энергию, называется абсолютно черным.

Закон Кирхгофа. Для всех тел при данной температуре отношение лучеиспускательной способности E к лучепоглощательной способности A есть постоянная величина, равная лучеиспускательной способности абсолютно черного тела e при той же температуре:

e.

Закон Стефана-Больцмана. Полная лучеиспускательная способность абсолютно черного тела прямо пропорциональна четвертой степени его абсолютной температуры:

e=sT 4 ,

где s– постоянная Стефана-Больцмана.

Закон Вина. Длина волны, соответствующая максимуму излучения абсолютно черного тела, обратно пропорциональна его абсолютной температуре:

l т ×T= в,

где в – постоянная Вина.

На законе Вина основана оптическая пирометрия – метод опре­деления температуры раскаленных тел (металла – в плавильной пе­чи, газа – в облаке атомного взрыва, поверхности звезд и т. п.) по спектру их излучения. Именно этим методом была впервые опре­делена температура поверхности Солнца.

124 . Инфракрасное излучение. Электромагнитное излучение, занимающее спектральную область между красной границей видимого света (λ= 0,76 мкм) и коротковолновым радиоизлучением (λ = 1 - 2 мм) называют инфракрасным (ИК). Нагретые твердые и жидкие тела испускают непрерывный инфракрасный спектр.

Лечебное применение инфракрасного излучения основано на его тепловом воздействии. Для лечения используют специальные лампы.

Инфракрасное излучение проникает в тело на глубину около 20 мм, поэтому в большей степени прогреваются поверхностные слои. Терапевтический эффект обусловлен возникающим температурным градиентом, что активизирует деятельность терморегулирующей системы. Усиление кровоснабжения облученного места приводит к благоприятным лечебным последствиям.

125. Ультрафиолетовое излучение. Электромагнитное излучение,

занимающее спектральную область между фиолетовой границей видимого света (λ = 400 нм) и длинноволновой частью рентгеновского излучения (λ = 10 нм), называют ультрафиолетовым(УФ).

Накаленные твердые тела при высокой температуре излучают

заметную долю ультрафиолетового излучения. Однако максимум

спектральной плотности энергетической светимости в соответствии с законом Вина приходится на 7000 К. Практически это означает, что в обычных условиях тепловое излучение серых тел не может служить эффективным источником УФ излучения. Наиболее мощным источником УФ излучения является Солнце, 9 % излучения которого на границе земной атмосферы составляет ультрафиолетовое.

УФ излучение необходимо для работы УФ микроскопов, люминесцентных микроскопов, для люминесцентного анализа. Главное применение УФ излучения в медицине связано с его специфическим биологическим воздействием, которое обусловлено фотохимическими процессами.

126. Термография – это регистрация излучения различных участков

поверхности тела с целью диагностической интерпретации. Определение температуры осуществляется двумя способами. В одном случае используются жидкокристаллические индикаторы, оптические свойства которых очень чувствительны к небольшим изменениям температуры.

Помещая эти индикаторы на тело больного, можно визуально по изменению их цвета определить местное различие температуры.

Другой метод основан на использовании тепловизоров , в которых используются чувствительные приемники инфракрасного излучения, например, фотосопротивления.

127. Физиологические основы термографии . Физиологические процессы, происходящие в организме человека, сопровождаются выделением теплоты, которая переносится циркулирующей кровью и лимфой. Источник тепла - биохимические процессы, происходящие в живом организме. Выделяемое тепло разносится кровью по всему организму. Обладая высокой теплоемкостью и теплопроводностью, циркулирующая кровь способна осуществлять интенсивный теплообмен между центральными и периферическими областями организма. Температура крови, проходящей по кожным сосудам, снижается на 2-3°.

В основе термографии лежит явление увеличения интенсивности инфракрасного излучения над патологическими очагами (в связи с усилением в них кровоснабжения и метаболических процессов) или уменьшение его интенсивности в областях с уменьшенным региональным кровотоком и сопутствующими изменениями в тканях и органах. Обычно это выражается появлением "горячей зоны". Выделяют два основных вида термографии: телетермография и контактная холестерическая термография.

128. Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора. В качестве приемных устройств инфракрасного излучения в тепловизорах используют чувствительные фотосопротивления.

Тепловизор работает следующим образом. Инфракрасное излучение фокусируется системой линз, после чего попадает на фотоприемник, работающий при охлаждении его до –196°С. Сигнал с фотоприемника усиливается и подвергается цифровой обработке с последующей передачей полученной информации на экран цветного монитора.

129. Контактная жидкокристаллическая термография опирается на оптические свойства анизотропных холестерических жидких кристаллов, которые проявляются изменением окраски в радужные цвета при нанесении их на термоизлучающие поверхности. Наиболее холодным участкам соответствует красный цвет, наиболее горячим - синий.

Жидкокристаллическая контактная пластинчатая термография в настоящее время широко и успешно применяется в различных об­ластях медицины, однако значительно большее применение нашли дистанци­онные методы регистрации инфракрасного излучения тела человека.

130. Клинические применения термографии. Термографическая диагностика не оказывает никакого внешнего воздействия или неудобства для пациента и позволяет "увидеть" аномалии тепловой картины на поверхности кожи пациента, которые характерные для многих заболеваний и физических расстройств.

Термография, являясь физиологичным, безвредным, неинвазивным методом диагностики, находит свое применение в практической медицине для диагностики широкого круга патологий: заболеваний молочных желез, позвоночника, суставов, щитовидной железы, ЛОР органов, сосудов, печени, желчного пузыря, кишечника, желудка, поджелудочной железы, почек, мочевого пузыря, предстательной железы. Термография позволяет зафиксировать изменения в самом начале развития патологического процесса, до появления структурных изменений в тканях.

131. Резерфордовская (планетарная) модель атома. Согласно этой модели весь положительный заряд и почти вся масса (более 99,94%) атома сосредоточены в атомном ядре, размер которого ничтожно мал (порядка 10 -13 см) по сравнению с размером атома (10 -8 см). Вокруг ядра по замкнутым (эллиптическим) орбитам движутся электроны, образуя электронную оболочку атома. Заряд ядра равен по абсолютной величине суммарному заряду электронов.

Недостатки резерфордовской модели.

а) в резерфордовской модели атом является неустойчивым

образованием, тогда как опыт свидетельствует об обратном;

б) спектр излучения атома по Резерфорду является непрерывным, тогда как опыт говорит о дискретном характере излучения.

132. Квантовая теория строения атома по Бору. Исходя из представлений о дискретности энергетических состояний атома, Бор усовершенствовал атомную модель Резерфорда, создав квантовую теорию строения атома. В ее основе лежат три постулата.

Электроны в атоме могут двигаться не по любым орбитам, а только по орбитам вполне определенного радиуса. На этих орбитах, называемых стационарными, момент количества движения электрона определяется выражением:

где m – масса электрона, v – его скорость, r – радиус электронной орбиты, n – целое число, называемое квантовым (n=1,2,3, …).

Движение электронов по стационарным орбитам не сопровождается излучением (поглощением) энергии.

Переход электрона с одной стационарной орбиты на другую

сопровождается излучением (или поглощением) кванта энергии.

Величина hn этого кванта равна разности энергий W 1 – W 2 стационарных состояний атома до и после излучения (поглощения):

hn=W 1 – W 2 .

Это соотношение называют условием частот.

133. Виды спектров. Различают три основных вида спектров: сплошные, линейчатые и полосатые.

Линейчатые спектры

атомами. Излучение обусловлено переходами связанных электронов на более низкие энергетические уровни.

Полосатые спектры излучаются отдельными возбужденными

молекулами. Излучение вызвано как электронными переходами в атомах, так и колебательными движениями самих атомов в молекуле.

Сплошные спектры излучаются совокупностями многих взаимодействующих между собой молекулярных и атомных ионов.

Основную роль в излучении играет хаотическое движение этих частиц, обусловленное высокой температурой.

134. Понятие о спектральном анализе . Каждый химический элемент

испускает (и поглощает) свет с вполне определенными, присущими только этому элементу длинами волн. Линейчатые спектры элементов получают путем фотографирования в спектрографах, в которых разложение света осуществляется с помощью дифракционной решетки. Линейчатый спектр элемента – это его своеобразный “отпечаток пальца”, который позволяет безошибочно идентифицировать этот элемент на основе длин волн излучаемого (или поглощаемого света). Спектрографические исследования являются одним из наиболее мощных имеющихся в нашем распоряжении методов химического анализа.

Качественный спектральный анализ – это сравнение полученных спектров с табличными для определения состава вещества.

Количественный спектральный анализ проводится путем фотометрирования (определения интенсивности) спектральных линий: яркость линий пропорциональна количеству данного элемента.

Градуировка спектроскопа . Для того чтобы с помощью спектроскопа можно было определять длины волн исследуемого спектра, спектроскоп необходимо проградуировать, т.е. установить зависимость между длинами волн спектральных линий и делениями шкалы спектроскопа, на которых они видны.

135. Основные характеристики и области применения спектрального анализа. С помощью спектрального анализа можно определять как атомный, так и молекулярный состав вещества. Спектральный анализ позволяет проводить качественное открытие отдельных компонентов анализируемой пробы и количественное определение их концентрации. Вещества с очень близкими химическими свойствами, которые трудно или даже невозможно анализировать химическими методами, легко определяются спектрально.

Чувствительность спектрального анализа, как правило, очень высока. Прямым анализом достигается чувствительность 10 -3 - 10 -6 %. Скорость спектрального анализа обычно значительно превышает скорость выполнения анализа другими методами.

136. Спектральный анализ в биологии. Спектроскопический метод измерения оптической активности веществ широко применяется для определения структуры биологических объектов. При изучении биологических молекул измеряются их спектры поглощения и флуоресценция. Флуоресцирующие при лазерном возбуждении красители используются для определения водородного показателя и ионных сил в клетках, а также для исследования специфических участков в белках. С помощью резонансного комбинационного рассеяния зондируется структура клеток и определяется конформация молекул белков и ДНК. Важную роль сыграла спектроскопия при изучении фотосинтеза и биохимии зрения.

137. Спектральный анализ в медицине. В организме человека присутствует более восьмидесяти химических элементов. Их взаимодействие и взаимовлияние обеспечивает процессы роста, развития, пищеварения, дыхания, иммунитета, кроветворения, памяти, оплодотворения и т.д.

Для диагностики микро- и макроэлементов, а также их количественного дисбаланса волосы и ногти являются наиболее благодатным материалом. Каждый волос хранит интегральную информацию о минеральном обмене всего организма за весь период времени своего роста. Спектральный анализ дает полные сведения о минеральном балансе за продолжительный период времени. Некоторые токсичные вещества можно обнаружить только этим способом. Для сравнения: обычные методики позволяют определять по анализу крови соотношение менее десяти микроэлементов на момент тестирования.

Результаты спектрального анализа помогают врачу в диагностике и поисках причины заболеваний, выявлении скрытых заболеваний и предрасположенности к ним; позволяют более точно назначать лекарственные препараты и разрабатывать индивидуальные схемы восстановления минерального баланса.

Трудно переоценить значение спектроскопических методов в фармакологии и токсикологии. В частности, они позволяют проводить анализ проб фармакологических препаратов при их валидации, а также определении фальсифицированных лекарственных средств. В токсикологии ультрафиолетовая и инфракрасная спектроскопии позволили проводить идентификацию многих алкалоидов из экстрактов Стаса.

138. Люминесценцией называется избыточное над тепловым излучение тела при данной температуре, имеющее длительность, значительно превышающую период излучаемых световых волн.

Фотолюминесценция. Люминесценция под воздействием фотонов называется фотолюминесценцией.

Хемилюминесценция. Люминесценция, сопровождающая химические реакции, называется хемилюминесценцией.

139. Люминесцентный анализ основан на наблюдении люминесценции объектов с целью их исследования; используется для обнаружения начальной стадии порчи продуктов, сортировки фармакологических препаратов и диагностики некоторых заболеваний.

140. Фотоэлектрическим эффектом называется явление вырывания

электронов из вещества под действием падающего на него света.

Привнешнем фотоэффекте электрон покидает поверхность вещества.

При внутреннем фотоэффекте электрон освобождается от связей с атомом, но остается внутри вещества.

Уравнение Эйнштейна:

где hn – энергия фотона, n – его частота, А – работа выхода электрона, – кинетическая энергия вылетевшего электрона, v – его скорость.

Законы фотоэффекта:

Число фотоэлектронов, вырываемых с поверхности металла за единицу времени, пропорционально световому потоку, падающему на металл.

Максимальная начальная кинетическая энергия фотоэлектронов

определяется частотой падающего света и не зависит от его интенсивности.

Для каждого металла существует красная граница фотоэффекта, т.е. максимальная длина волны l 0 , при которой еще возможен фотоэффект.

Внешний фотоэффект находит применение в фотоэлектронных умножителях (ФЭУ) и электронно-оптических преобразователях (ЭОП). ФЭУ применяются для измерения световых потоков малой интенсивности. С их помощью можно определить слабую биолюминесценцию. ЭОП применяют в медицине для усиления яркости рентгеновского изображения; в термографии – для преобразования инфракрасного излучения организма в видимое. Кроме того, фотоэлементы применяются в метро при прохождении турникета, в современных гостиницах, аэропортах и т.д. для автоматического открывания и закрывания дверей, для автоматического включения и выключения освещения улиц, для определения освещенности (люксметр) и пр.

141. Рентгеновское излучение –это электромагнитное излучение с длиной волны от 0,01 до 0,000001 мкм. Оно вызывает свечение экрана, покрытого люминофором, и почернение фотоэмульсии, благодаря чему его можно использовать для фотографирования.

Рентгеновские лучи возникают при резкой остановке электронов при их ударе об анод в рентгеновской трубке. Предварительно электроны, эмиттируемые катодом, разгоняются ускоряющей разностью потенциалов до скоростей порядка 100000 км/с. Это излучение, называемое тормозным, имеет сплошной спектр.

Интенсивность рентгеновского излучения определяется эмпирической формулой:

где I – сила тока в трубке, U – напряжение, Z – порядковый номер атома вещества антикатода, k – const.

Рентгеновское излучение, возникающее в результате торможения электронов, называется «тормозным».

Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким , а длинноволновое – мягким .

При больших напряжениях в рентгеновской трубке наряду с

рентгеновским излучением, имеющим сплошной спектр, возникает рентгеновское излучение, имеющее линейчатый спектр; последний налагается на сплошной спектр. Это излучение называется характеристическим, так как каждое вещество имеет собственный, характерный для него линейчатый рентгеновский спектр (сплошной спектр от вещества анода и определяется только напряжением на рентгеновской трубке).

142. Свойства рентгеновского излучения. Рентгеновские лучи обладают всеми свойствами, которые характеризуют световые лучи:

1) не отклоняются в электрическом и магнитном полях и, следовательно, не несут электрического заряда;

2) обладают фотографическим действием;

3) вызывают ионизацию газа;

4) способны вызывать люминесценцию;

5) могут преломляться, отражаться, обладают поляризацией и дают явление интерференции и дифракции.

143. Закон Мозли. Так как атомы различных веществ имеют различные энергетические уровни в зависимости от их строения, то и спектры характеристического излучения зависят от строения атомов вещества анода. Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:

где n – частота спектральной линии, Z – порядковый номер испускающего элемента, А и В – постоянные.

144. Взаимодействие рентгеновского излучения с веществом. В зависимости от соотношение энергии фотона e и энергии ионизации А имеют место три главных процесса.

Когерентное (классическое) рассеяние . Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hn<А. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяются, то когерентное рассеяние само по себе не вызывает биологического действия.

Некогерентное рассеяние (эффект Комптона) . В 1922 году А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление – эффектом Комптона.

Фотоэффект . При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Ионизирующее действие рентгеновского излучения проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

145. Рентгенолюминесценцией называют свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку, что позволяет фиксировать эти лучи.

146. Поглощение рентгеновского излучения описывается законом Бугера:

F = F 0 е - m x ,

где m - линейный коэффициент ослабления,

x – толщина слоя вещества,

F 0 – интенсивность падающего излучения,

F - интенсивность прошедшего излучения.

147. Воздействие рентгеновского излучения на организм . Хотя лучевые нагрузки при рентгенологических исследованиях невелики, они могут приводить к изменениям в хромосомном аппарате клеток – радиационным мутациям. Поэтому рентгеновские исследования должны регламентироваться.

148. Рентгеновская диагностика. Рентгеновская диагностика основана на избирательном поглощении тканями и органами рентгеновского излучения.

149. Рентгеноскопия. При рентгеноскопии изображение просвечиваемого объекта получают на флюороскопическом экране. Методика проста и экономична, позволяет наблюдать за движением органов и за перемещением в них контрастного вещества. Однако она обладает и недостатками: после неё не остается документа, который мог бы обсуждаться или рассматриваться в дальнейшем. На экране плохо различимы мелкие детали изображения. Рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на больного и врача, чем рентгенография.

150. Рентгенография. При рентгенографии пучок рентгеновских лучей направляется на исследуемую часть тела. Излучение, прошедшее через тело человека, попадает на пленку, на которой после её обработки получается изображение.

151. Электрорентгенография. В ней пучок рентгеновского излучения, прошедший через больного, попадает на заряженную статическим электричеством селеновую пластинку. При этом пластина изменяет свой электрический потенциал, на ней возникает скрытое изображение из электрических зарядов.

Главное достоинство метода – возможность быстро получить большое число качественных снимков без расхода рентгеновской пленки, содержащей дорогостоящие соединения серебра, и без “мокрого” фотопроцесса.

152. Флюорография. Её принцип состоит в фотографировании рентгеновского изображения с экрана на малоформатную роликовую пленку. Применяется при массовых обследованиях населения. Преимущества метода – быстрота, экономичность.

153. Искусственное контрастирование органов. Метод основан на

введении в организм безвредных веществ, которые поглощают

рентгеновское излучение гораздо сильнее или, наоборот, гораздо слабее, чем исследуемый орган. Например, больному рекомендуется принять водную взвесь сульфата бария. При этом на снимке появляется тень контрастной массы, находящейся в полости желудка. По положению, форме, величине и очертаниям тени можно судить о положении желудка, форме и величине его полости.

Йод используется для контрастирования щитовидной железы. Из газов для этой цели применяют кислород, закись азота, углекислый газ. В кровяное русло можно вводить только закись азота и углекислый газ, так как они в противоположность кислороду не вызывают газовой эмболии.

154. Усилители рентгеновских изображений. Яркость свечения, преобразующего рентгеновское излучение в видимый свет флюоресцентного экрана, ко­торым пользуется рентгенолог, производя рентгеноскопию, составляет сотые доли кандел на квадратный метр (кандел - свеча). Это примерно соответствует яркости лунного света в безоблачную ночь. При подобной осве­щенности человеческий глаз работает в режиме суме­речного зрения, при котором чрезвычайно плохо раз­личаются мелкие детали и слабые перепады конт­раста.

Увеличить яркость экрана нельзя из-за пропорционального увеличения дозы облучения пациента, которая и так не безвредна.

Возможность устранить это препятствие дают усилители рентгеновского изображения (УРИ), способные усиливать яркость изображений в тысячи раз за счет мно­гократного ускорения электронов с помощью внешнего электрического поля. УРИ, помимо увеличения яркости, позволяют существенно сократить дозу облучения при исследовании.

155. Ангиография – метод контрастного исследо­вания кровеносной

системы, в котором под визу­альным рентгеновским контролем с помощью УРИ и теле­видения рентгенолог вводит в вену тонкую эластичную трубку - катетер и направляет его вместе с током кровипрактически в любую область тела, даже в сердце. Затем в нужный момент по катетеру вводится рентгеноконтрастная жидкость и одновременно делается серия сним­ков, с большой скоростью следующих друг за другом.

156. Цифровой метод обработки информации. Электрические сигналы представляют собой наиболее удобную форму для последующей обработки изобра­жения. Иногда на изображении выгодно подчеркнуть линию, выделить контур, иногда высве­тить текстуру. Обработка может осуществляться как электронными аналоговыми, так и цифровыми методами. Для целей цифровой обработки аналоговые сигналы превращаются в дискретную форму с помощью аналого-цифровых преобразователей АЦП и в таком виде поступают на компьютер.

Полученное на флюороскопическом экране световое изображение усиливается электронно-оптическим преобразователем (ЭОП) и поступает через оптическую систему на вход телевизионной труб­ки ТТ, превращаясь в последовательность электрических сигналов. С помощью АЦП производится дискретизация и квантование, а далее запись в оперативную цифровую память – ОЗУ и обработка сигналов изображения по заданным программам. Преобразованное изображение вновь превращается в аналоговую форму с помощью цифро-аналогового преобразователя ЦАП и вы­водится на экран видеоконтрольного устройства ВКУ полутонового дисплея.

157. Цветовое кодирование черно-белых изображений. Большинство интроскопических изображений монохромно, то есть, лишено цвета. Но ведь нормальное зрение человека - цветное. Чтобы полностью использовать способности глаза, имеет смысл в ряде случаев искусственно раскрашивать наши интроскопические изображения на последнем этапе их преобразования.

При восприятии глазом цветного изображения появля­ются

дополнительные признаки изображения, облегчаю­щие анализ. Это

цветовой тон, насыщенность цвета, цветной контраст. В цвете во много раз повышается различаемость деталей и контрастная чувствительность глаза.

158. Рентгеновская терапия. Рентгеновское излучениеприменяется для лучевой терапии при лечении ряда заболеваний. Показания и тактика рентгенотерапии во многом аналогичны методам гамма-терапии.

159. Томография. На изображение органа или патологического образования, интересующего врача, наслаиваются тени соседних органов и тканей, расположенных по ходу рентгеновского пучка.

Суть томографии заключается в том, что в процессе съемки

рентгеновская трубка перемещается относительно больного, давая резкое изображения только тех деталей, которые лежат на заданной глубине. Таким образом, томография – это послойное рентгеновское исследование.

160. Лазерное излучение –это когерентное одинаково направленное

излучение множества атомов, создающее узкий пучок монохроматического света.

Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в возбужденное (метастабильное) состояние. Для этого рабочему веществу передается электромагнитная энергия от специального источника (метод накачки). После этого в рабочем веществе начнутся почти одновременные вынужденные переходы всех возбужденных атомов в нормальное состояние с излучением мощного пучка фотонов.

161. Применение лазера в медицине. Высокоэнергетические лазеры

применяются в качестве лазерного скальпеля в онкологии. При этом достигается рациональное иссечение опухоли с минимальным повреждением окружающих тканей, причем операцию можно выполнять вблизи структур мозга с большой функциональной значимостью.

Кровопотеря при применении луча лазера гораздо меньше, рана полностью стерилизуется, а отек в послеоперационном периоде минимальный.

Особенно эффективен лазер в микрохирургии глаза. Он позволяет проводить лечение глаукомы посредством “прокалывания” его лучом микроскопических отверстий для оттока внутриглазной жидкости. Лазером осуществляется безоперационное лечение отслойки сетчатки.

Низкоэнергетическое лазерное излучение оказывает противовоспалительное, аналгезирующее действие, изменяет тонус сосудов, улучшает обменные процессы и т.д.; оно применяется в специальной терапии в различных областях медицины.

162. Воздействие лазера на организм. Воздействие лазерного излучения на организм во многом схоже с воздействием электромагнитного излучения видимого и инфракрасного диапазонов. На молекулярном уровне такое воздействие приводит к изменению энергетических уровней молекул живого вещества, их стереохимической перестройке, коагуляции белковых структур. Физиологические эффекты лазерного воздействия связаны с фотодинамическим эффектом фотореактивации, эффектом стимуляции или угнетения биопроцессов, изменением функционального состояния как отдельных систем, так и организма в целом.

163. Использование лазеров в медико-биологических исследованиях. Одним из основных направлений лазерной диагностики является спектроскопия конденсированных сред , которая позволяет проводить анализ биологических тканей и их визуализацию на клеточном, субклеточном и молекулярном уровнях.

Как известно, основную долю информации об окружающем мире человек получает с помощью зрения. Глаз человека - сложный и совершенный прибор. Этот созданный природой прибор работает со светом - электромагнитным излучением, диапазон длин волн которого находится между 400 и 760 нанометрами. Цвет, который при этом воспринимает человек, изменяется от фиолетового до красного.

Электромагнитные волны, соответствующие видимому свету, взаимодействуют с электронными оболочками атомов и молекул глаза. Результат этого взаимодействия зависит от того, в каком состоянии находятся электроны этих оболочек. Свет может поглощаться, отражаться или рассеиваться. Что именно произошло со светом, может многое рассказать об атомах и молекулах, с которыми он взаимодействовал. Диапазон размеров атомов и молекул от 0,1 до десятков нанометров. Это во много раз меньше, чем длина волны света. Тем не менее, объекты именно таких размеров - назовем их нанообъектами - очень важно увидеть. Что же надо для этого сделать? Обсудим сначала, что может рассмотреть человеческий глаз.

Обычно, когда говорят о разрешающей способности того или иного оптического прибора, оперируют двумя понятиями. Одно из них - угловое разрешение, а второе - линейное разрешение. Эти понятия взаимосвязаны. К примеру, для человеческого глаза угловое разрешение составляет приблизительно 1 угловую минуту. При этом глаз может различить два точечных объекта, удаленных от него на 25–30 см, только тогда, когда расстояние между этими объектами больше чем 0,075 мм. Это вполне сравнимо с разрешением обычного компьютерного сканера. В самом деле, разрешение 600 точек на дюйм означает, что сканер может различить точки, расположенные на расстоянии 0,042 мм друг от друга.

Для того чтобы можно было различать объекты, расположенные на еще меньших расстояниях друг от друга, был придуман оптический микроскоп - прибор, увеличивающий разрешающую способность глаза. Выглядят эти приборы по-разному (что видно из рисунка 1), но принцип действия у них один тот же. Оптический микроскоп позволил отодвинуть предел разрешения до долей микрона. Уже 100 лет назад оптическая микроскопия сделала возможным изучать объекты микронных размеров. Однако тогда же стало ясно, что простым увеличением количества линз и улучшением их качества добиться дальнейшего увеличения разрешающей способности невозможно. Разрешение оптического микроскопа оказалось ограничено свойствами самого света, а именно его волновой природой.

Еще в конце позапрошлого века было установлено, что разрешение оптического микроскопа составляет . В этой формуле λ - длина волны света, а n sin u - числовая апертура объектива микроскопа, которая характеризует как микроскоп, так и то вещество, которое находится между объектом изучения и самой близкой к нему линзой микроскопа. И действительно, в выражение для числовой апертуры входят показатель преломления n среды, находящейся между объектом и объективом, и угол u между оптической осью объектива и самыми крайними лучами, которые выходят из объекта и могут попасть в этот объектив. Показатель преломления вакуума равен единице. У воздуха этот показатель очень близок к единице, у воды он составляет 1,33303, а у специальных жидкостей, используемых в микроскопии для получения максимального разрешения, n доходит до 1,78. Каким бы ни был угол u , величина sin u не может быть больше единицы. Таким образом, разрешение оптического микроскопа не превышает долей длины волны света.

Обычно считается, что разрешение составляет половину длины волны.

Интенсивность, разрешение и увеличение объекта - разные вещи. Можно сделать так, что расстояние между центрами изображений объектов, которые расположены в 10 нм друг от друга, будет 1 мм. Это будет соответствовать увеличению в 100 000 раз. Тем не менее, различить, один это объект или два, не получится. Дело в том, что изображения объектов, размеры которых очень малы по сравнению с длиной волны света, будут иметь одинаковые форму и размеры, не зависящие от формы самих объектов. Такие объекты называют точечными - их размерами можно пренебречь. Если такой точечный объект светится, то оптический микроскоп изобразит его в виде светлого кружка, окруженного светлыми и темными кольцами. Будем далее, для простоты, рассматривать именно источники света. Типичное изображение точечного источника света, полученное с помощью оптического микроскопа, показано на рисунке 2. Интенсивность светлых колец намного меньше, чем у кружочка, и убывает по мере удаления от центра изображения. Чаще всего видно только первое светлое кольцо. Диаметр первого темного кольца равен . Функция, которая описывает такое распределение интенсивности, называется функцией рассеяния точки. Эта функция не зависит от того, каково увеличение. Изображение нескольких точечных объектов будет представлять собой именно круги и кольца, как это видно из рисунка 3. Полученное изображение можно увеличивать, однако если изображения двух соседних точечных объектов сливаются, то они будут сливаться и дальше. Такое увеличение часто называют бесполезным - большие изображения просто будут более размытыми. Пример бесполезного увеличения показан на рисунке 4. Формула часто называется дифракционным пределом, и она настолько знаменита, что именно ее высекли на памятнике автору этой формулы - немецкому физику-оптику Эрнсту Аббе.

Конечно, со временем оптические микроскопы стали снабжать разнообразными устройствами, позволяющими запоминать изображения. Человеческий глаз дополнили сначала пленочные фото- и кинокамеры, а потом - камеры, в основе которых лежат цифровые устройства, преобразующие попадающий на них свет в электрические сигналы. Самыми распространенными из таких устройств являются ПЗС-матрицы (ПЗС расшифровывается как прибор с зарядовой связью). Количество пикселей в цифровых камерах продолжает расти, однако само по себе это не может улучшить разрешение оптических микроскопов.

Еще двадцать пять лет назад казалось, что дифракционный предел непреодолим и что, для того чтобы изучать объекты, размеры которых во много раз меньше, чем длина волны света, необходимо отказаться от света как такового. Именно таким путем пошли создатели электронных и рентгеновских микроскопов. Несмотря на многочисленные преимущества таких микроскопов, задача использования именно света для рассматривания нанообъектов оставалась. Причин для этого было много: удобство и простота работы с объектами, небольшое время, которое требуется для получения изображения, известные способы окрашивания образцов и многое другое. Наконец, после долгих лет напряженной работы стало возможным рассматривать нанообъекты с помощью оптического микроскопа. Наибольший прогресс в этом направлении достигнут в области люминесцентной микроскопии. Конечно, дифракционный предел никто не отменял, но его удалось обойти. В настоящее время существуют различные оптические микроскопы, позволяющие рассматривать объекты, размеры которых намного меньше длины волны того самого света, который создает изображения этих объектов. Все эти приборы объединяет один общий принцип. Попробуем пояснить, какой именно.

Из того, что уже говорилось о дифракционном пределе разрешения, ясно, что увидеть точечный источник не так уж сложно. Если этот источник обладает достаточной интенсивностью, его изображение будет отчетливо видно. Форма и размер этого изображения, как уже говорилось, будут определяться свойствами оптической системы. При этом, зная свойства оптической системы и будучи уверенными в том, что объект точечный, можно определить, где именно находится объект. Точность определения координат такого объекта достаточно высока. Иллюстрацией этого может служить рисунок 5. Координаты точечного объекта можно определить тем точнее, чем интенсивнее он светится. Еще в 80-х годах прошлого века с помощью оптического микроскопа умели определять положение отдельных светящихся молекул с точностью в 10–20 нанометров. Необходимым условием столь точного определения координат точечного источника является его одиночество. Ближайший к нему другой точечный источник должен находиться настолько далеко, чтобы исследователь точно знал, что обрабатываемое изображение соответствует одному источнику. Понятно, что это расстояние l должно удовлетворять условию . В этом случае анализ изображения может дать очень точные данные о положении самого источника.

Большинство объектов, размеры которых намного меньше разрешающей способности оптического микроскопа, можно представить как набор точечных источников. Источники света в таком наборе находятся друг от друга на расстояниях, намного меньших величины . Если эти источники будут светить одновременно, то сказать что-либо о том, где именно они расположены, будет невозможно. Тем не менее, если суметь заставить эти источники светить по очереди, то положение каждого них можно определить с высокой точностью. Если эта точность превышает расстояние между источниками, то, обладая знанием о положении каждого из них, можно узнать о том, каково их взаимное расположение. А это означает, что получена информация о форме и размерах объекта, который представлен как набор точечных источников. Другими словами, в таком случае можно рассмотреть в оптический микроскоп объект, размеры которого меньше, чем дифракционный предел!

Таким образом, ключевым моментом является получение информации о различных частях нанообъекта независимо друг от друга. Существуют три основные группы методов, позволяющие сделать это.

Первая группа методов целенаправленно заставляет светить ту или иную часть исследуемого объекта. Самый известный из этих методов - сканирующая оптическая микроскопия ближнего поля. Рассмотрим ее подробнее.

Если внимательно изучить те условия, которые подразумеваются, когда речь идет о дифракционном пределе, обнаружится, что расстояния от объектов до линз значительно больше длины волны света. На расстояниях, сравнимых и меньших этой длины волны, картина получается другой. Вблизи любого объекта, попавшего в электромагнитное поле световой волны, существует переменное электромагнитное поле, частота изменения которого такая же, как частота изменения поля в световой волне. В отличие от световой волны, это поле быстро затухает по мере удаления от нанообъекта. Расстояние, на котором происходит уменьшение интенсивности, например, в e раз, сравнимо с размерами объекта. Таким образом, электромагнитное поле оптической частоты оказывается сконцентрированным в объеме пространства, размер которого намного меньше, чем длина волны света. Любой нанообъект, попавший в эту область, будет так или иначе взаимодействовать со сконцентрированным полем. Если тот объект, с помощью которого осуществляется это концентрирование поля, последовательно перемещать по какой-либо траектории вдоль изучаемого нанообъекта и регистрировать свет, излучаемый этой системой, то можно построить изображение по отдельным точкам, лежащим на этой траектории. Конечно, в каждой точке изображение будет выглядеть так, как показано на рисунке 2, но разрешение при этом будет определяться тем, насколько удалось сконцентрировать поле. А это, в свою очередь, определяется размерами того объекта, с помощью которого это поле концентрируется.

Самым распространенным способом такой концентрации поля является изготовление очень маленького отверстия в металлическом экране. Обычно это отверстие находится на конце заостренного и покрытого тонкой пленкой металла световода (световод часто называется оптическим волокном и широко используется для передачи данных на большие расстояния). Сейчас удается изготавливать отверстия с диаметрами от 30 до 100 нм. Таким же по величине получается и разрешение. Приборы, работающие по этому принципу, и называются сканирующими оптическими микроскопами ближнего поля. Они появились 25 лет тому назад.

Суть второй группы методов сводится к следующему. Вместо того чтобы заставлять соседние нанообъекты светить по очереди, можно использовать объекты, которые светятся разными цветами. В этом случае с помощью светофильтров, пропускающих свет того или иного цвета, можно определять положение каждого из объектов, а потом - составлять единую картину. Это очень похоже на то, что изображено на рисунке 5, только цвета для трех изображений будут различными.

Последняя группа методов, позволяющих преодолеть дифракционный предел и рассмотреть нанообъекты, использует свойства самих светящихся объектов. Существуют такие источники, которые можно «включать» и «выключать» с помощью специально подобранного света. Такие переключения происходят статистически. Иначе говоря, если имеется много переключаемых нанообъектов, то, подобрав длину волны света и его интенсивность, можно заставить «выключиться» только часть из этих объектов. Остальные объекты будут продолжать светить, и можно получить от них изображение. После этого надо «включить» все источники и снова «выключить» часть из них. Набор оставшихся «включенными» источников будет отличаться от набора, который остался «включенным» в первый раз. Повторяя такую процедуру много раз, можно получить большой набор изображений, отличающихся друг от друга. Анализируя такой набор, можно установить местоположение большой доли всех источников с очень высокой точностью, значительно превышающей дифракционный предел. Пример сверхразрешения, полученного таким способом, приведен на рисунке 6.

В настоящее время оптическая микроскопия со сверхразрешением быстро развивается. Можно со всей уверенностью предполагать, что в грядущие годы эта область будет привлекать все большее число исследователей, и хочется верить, что среди них будут и читатели этой статьи.

Предмет h помещают несколько дальше переднего фокуса объектива. Объектив дает действительное, обратное, увеличенное изображение H , находящееся между передним фокусом окуляра и оптическим центром окуляра. Это промежуточное изображение рассматривается в окуляр как в лупу. Окуляр дает мнимое, прямое, увеличенное изображение H , которое расположено на расстоянии наилучшего зрения S ≈ 25 см от оптического центра глаза.

Это изображение мы рассматриваем глазом, на его сетчатке формируется действительное, обратное, уменьшенное изображение.

Увеличение микроскопа – отношение размеров мнимого изображения к размерам рассматриваемого через микроскоп предмета:
. Умножим числитель и знаменатель на размер промежуточного изображения H :
. Таким образом, увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. Увеличение объектива можно выразить через характеристики микроскопа, используя подобие прямоугольных треугольников
, где L оптическая длина тубуса : расстояние между задним фокусом объектива и передним фокусом окуляра (считаем, что L >> F об). Увеличение окуляра
. Следовательно, увеличение микроскопа равно:
.

4. Разрешающая способность и предел разрешения микроскопа. Дифракционные явления в микроскопе, понятие о теории Аббе.

Предел разрешения микроскопа z – это наименьшее расстояние между двумя точками рассматриваемого в микроскоп объекта, когда эти точки еще воспринимаются отдельно. Предел разрешения обычного биологического микроскопа лежит в диапазоне 34 мкм. Разрешающей способностью микроскопа называют способность давать раздельное изображение двух близко расположенных точек исследуемого объекта, то есть это величина, обратная пределу разрешения.

Дифракция света налагает предел на возможность различения деталей объектов при их наблюдении в микроскоп. Так как свет распространяется не прямолинейно, а огибает препятствия (в данном случае, рассматриваемые объекты), то изображения мелких деталей объектов получаются размытыми.

Э. Аббе предложил дифракционную теорию разрешающей способности микроскопа . Пусть предметом, который мы хотим рассмотреть в микроскоп, будет дифракционная решетка с периодом d . Тогда минимальная деталь предмета, которую мы должны различить, как раз и будет периодом решетки. На решетке происходит дифракция света, но диаметр объектива микроскопа ограничен, и при больших углах дифракции не весь свет, прошедший через решетку, попадает в объектив. Реально свет от предмета распространяется к объективу в некотором конусе. Получаемое изображение тем ближе к оригиналу, чем больше максимумов участвует в формировании изображения. Свет от предмета распространяется к объективу от конденсора в виде конуса, который характеризуется угловой апертурой u – угол, под которым виден объектив из центра рассматриваемого предмета, то есть угол между крайними лучами конического светового пучка, входящего в оптическую систему. Согласно Э. Аббе, для получения изображения решетки, даже самого нечеткого, в объектив должны попасть лучи любых двух порядков дифракционной картины, например, лучи, образующие центральный и, по крайней мере, первый дифракционный максимум. Вспомним, что для наклонного падения лучей на дифракционную решетку ее главная формула имеет вид: . Если свет падает под углом , а угол дифракции для первого максимума равен
, то формула приобретает вид
. За предел разрешения микроскопа следует принять постоянную дифракционной решетки, тогда
, где  - длина волны света.

Как видно из формулы, один из способов уменьшения предела разрешения микроскопа – использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Принципиальная оптическая схема такого микроскопа аналогична схемам обычного микроскопа. Основное отличие заключается в использовании оптических устройств, прозрачных для УФ-света, и в особенностях регистрации изображения. Так как глаз не воспринимает ультрафиолетовое излучение (кроме того, оно обжигает глаза, т.е. является опасным для органа зрения), то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи.

Если в пространство между объективом и покровным стеклом препарата поместить специальную жидкую среду, называемую иммерсией , то предел разрешения также уменьшается:
, где n – абсолютный показатель преломления иммерсии, A числовая апертура объектива . В качестве иммерсии используют воду (n = 1,33), кедровое масло (n = 1,515), монобромнафталин (n = 1,66) и др. Для каждого вида иммерсии изготавливают специальный объектив, и его можно применять только с данным видом иммерсии.

Еще один способ уменьшения предела разрешения микроскопа – это увеличение апертурного угла. Этот угол зависит от размеров объектива и расстояния от предмета до объектива. Однако расстояние от предмета до линзы нельзя изменять произвольно, оно постоянно для каждого объектива и приближать предмет нельзя. В современных микроскопах апертурный угол достигает 140 о (соответственно, u /2 = 70 о). С таким углом получают максимальные числовые апертуры и минимальные пределы разрешения.

Данные приведены для наклонного падения света на объект и длины волны 555 нм, к которой наиболее чувствителен глаз человека.

Обратите внимание на то, что окуляр совершенно не влияет на разрешающую способность микроскопа, он только создает увеличенное изображение объектива.